Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation

نویسنده

  • Salim A. Messaoudi
چکیده

In this paper, we consider the nonlinear viscoelastic equation utt −Δu+ t ∫ 0 g(t − τ )Δu(τ) dτ + ut |ut |m−2 = u|u|p−2 with initial conditions and Dirichlet boundary conditions. For nonincreasing positive functions g and for p >m, we prove that there are solutions with positive initial energy that blow up in finite time. © 2005 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Blow-up Result in a Nonlinear Viscoelastic Problem with Arbitrary Positive Initial Energy

In this paper we consider a problem for a nonlinear viscoelastic wave equation. Under arbitrary positive initial energy and standared conditions on the relaxation function, we prove a finite-time blow-up result.

متن کامل

Blow-up of arbitrarily positive initial energy solutions for a viscoelastic wave system with nonlinear damping and source terms

*Correspondence: [email protected] School of Mathematical Sciences, Ocean University of China, Qingdao, P.R. China Abstract This work is concerned with the Dirichlet initial boundary problem for a semilinear viscoelastic wave system with nonlinear weak damping and source terms. For nonincreasing positive functions g and h, we show the finite time blow-up of some solutions whose initial data hav...

متن کامل

A blow-up result for a higher-order nonlinear Kirchhoff-type hyperbolic equation

In this work we consider a multi-dimensional higher-order Kirchhoff-type wave equation, with Dirichlet boundary conditions. We establish a blow-up result for certain solutions with positive initial energy. c © 2006 Elsevier Ltd. All rights reserved.

متن کامل

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

Exponential energy decay and blow-up of solutions for a system of nonlinear viscoelastic wave equations with strong damping

with initial and Dirichlet boundary conditions. We prove that, under suitable assumptions on the functions gi, fi (i = 1, 2) and certain initial data in the stable set, the decay rate of the solution energy is exponential. Conversely, for certain initial data in the unstable set, there are solutions with positive initial energy that blow up in finite time. 2000 Mathematics Subject Classificatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006